

Available online at www.sciencedirect.com

Nuclear Physics A 787 (2007) 373c-380c

Confirmation of the Decay of $^{283}112$ and First Indication for Hg-like Behavior of Element 112

R. Eichler^{a b *}, N.V. Aksenov^c, A.V. Belozerov^c, G.A. Bozhikov^c, V.I. Chepigin^c, R. Dressler,^a, S.N. Dmitriev^c, H.W. Gäggeler,^{ab}, V.A. Gorshkov^c, F. Haenssler^b, M.G. Itkis^c, V.Ya. Lebedev^c, A. Laube^a, O.N. Malyshev^c, Yu.Ts. Oganessian^c, O.V. Petruschkin^c, D. Piguet^a, P. Rasmussen^a, S.V. Shishkin^c, A.V. Shutov^c, A.I. Svirikhin^c, E.E. Tereshatov^c, G.K. Vostokin^c, M. Wegrzecki^d, and A.V. Yeremin^c

^aPaul Scherrer Institute, CH-5232 Villigen, Switzerland

^bDepartment for Chemistry and Biochemistry, The University of Bern, CH-3012 Bern, Switzerland

^cFlerov Laboratory for Nuclear Reactions, JINR, 141980 Dubna, Russia

^dInsitute of Electron Technology, 02-668 Warsaw, Poland

Two gas phase adsorption chemistry experiments aimed at the chemical characterization of element 112 using its isotope ²⁸³112 have been performed at the Flerov Laboratory for Nuclear Reactions (FLNR) Dubna, Russia. The applied Insitu-Volatilization and On-line Detection (IVO) technique is a thermochromatographic system combining the determination of the deposition temperature of volatile elements on a surface along a temperature gradient with an efficient detection of the deposited species by event-by-event alpha and SF-fragment spectroscopy. Two possibilities to produce the isotope $^{283}112$ were used: 1.) the direct production reaction ${}^{238}U({}^{48}Ca,3n){}^{283}112$; 2.) the reaction ${}^{242}Pu({}^{48}Ca,3n)$. where the primary product ²⁸⁷114, decays via alpha emission to ²⁸³112 with a half-life of 0.5 s. The chemistry experiments were aimed at a chemical identification of 283 112 and an independent confirmation of its decay properties. In the direct reaction no decays related to ²⁸³112 were observed. However, two decay chains unambiguously attributed to the decay of ²⁸³112 were observed using the second production path. Previously reported observation of ²⁸³112 and ²⁷⁹Ds and their decay properties were confirmed. From its thermochromatorgaphic deposition first thermochemical data were deduced for element 112, unveiling it as a typical group 12 element.

1. Introduction

Since 1999 34 new isotopes of superheavy elements (SHE) 112-118 have been produced at FLNR in 48 Ca induced nuclear fusion reactions [1–5]. Their long half-lives, e.g. 283 112 (4 s) and 289 114 (2 s) indicate the close vicinity to the island of stability of SHE (114

0375-9474/\$ – see front matter $\ensuremath{\mathbb{C}}$ 2006 Elsevier B.V. All rights reserved.

doi:10.1016/j.nuclphysa.2006.12.058

^{*}Corresponding author. E-mail address: robert.eichler@psi.ch (R. Eichler)

protons, 182 neutrons) as it was proposed already in 1966/67 [6,7]. However, the unambiguous assignment of the atomic number Z of these new isotopes is difficult since the observed α -decay chains always end in a previously unknown region of nuclides, which all decay by the unspecific spontaneous fission (SF). As it has been shown earlier [8–11] chemical techniques are available, which can be used to chemically identify genetically linked decay products of SHE. This approach allows for the identification of the atomic number of one member of the chains by chemical means, thus securing the elemental assignments of the entire decay chain. The observed half-lives of the produced isotopes of elements 112 and 114 are long enough [4] to chemically investigate these elements with recently available gas phase chemical techniques (see for review [11]). Their chemical identification is very exciting from the point of view of the periodic table. The observed new isotopes belong to the transactinide series of elements. The heaviest among them are elements of the groups 12-18, having electrons in their outer s and p electron valence shells. These electrons are expected to be severely influenced by relativistic effects induced by the high nuclear charge of the atoms [12,13]. The shape of their orbitals changes and also the energetic degeneration of the p, d, and f orbitals is abrogated. Element 112 has a predicted electronic ground state configuration $Rn:5f^{14}6d^{10}7s^2$. The relativistic contraction leads to stronger binding of the spherical 7s orbital. However, the resulting screening of the nuclear charge may lead to an expansion of the 6d orbitals and their looser binding. Therefore, a chemical behavior between noble-gas like and metallic was predicted for element 112 [14–22]. It was already suggested in 1976 that an exceptionally good possibility to reveal metallic properties of SHE will be the investigation of their interaction with metal surfaces [22]. The idea was that the interaction potential between SHE and transition metals promotes an intermetallic bond formation. If not, this element would simply show a physisorption interaction comparable to a noble gas, such as radon. Predicted thermodynamic properties regarding sublimation and adsorption of element 112 on a gold surface and the corresponding data for Zn, Cd, Hg, and Rn are summarized in table 1. The primary observation of a 5 min 283 112 decaying by SF [1,2] in the nuclear fusion reaction 238 U(48 Ca,3n)initiated two types of chemistry experiments aimed at the investigation of element 112. 1.) The observation of 8 SF events in an ionization chamber coupled to a detector array with gold covered detectors held at room temperature was interpreted as an observation of a noble-gas like ²⁸³112 [23,24]. 2.) The IVO technique developed together with the Cryo On-Line Detector (COLD) proved to be successful for the chemical identification of Hassium (element 108) in the chemical state of the very volatile HsO_4 [8]. This technique required some modifications to be used for the investigation of chemical properties of element 112 [25,26]. The observation of high energetic events accumulating in the deposition region of radon in thermochromatography experiments performed with a 2- π detector array Cryo-On-Line Detector (COLD) at the Gesellschaft fr Schwerionenforschung, Darmstadt, Germany (GSI) [27] seemed to support the observation from [24]. However, these events could not be unambiguously assigned to SF decay [26]. Moreover, the observation of new decay properties for ²⁸³112 at the Dubna Gas filled Recoil Separator (DGFRS) as being 9.5 MeV alpha emitter with a half-life of 4 s [4] questioned the results. A second thermochromatography experiment with an improved version of the COLD detector (almost 4π -detection geometry) was performed at GSI. The experiment was sensitive to the reported new decay properties of $^{283}112$. However,

the sensitivity required to observe ²⁸³112 was not reached [26]. Here we report on two further chemistry experiments joining the capabilities of the IVO thermochromatography method using the 4π -COLD detector with the availability of high ⁴⁸Ca beam intensities and long beam times at FLNR. The first experiment aimed at the direct production of ²⁸³112 using the ⁴⁸Ca on ²³⁸U fusion reaction. During the second experiment the isotope ²⁸³112 was produced indirectly over the alpha decay of ²⁸⁷114, which was formed in the reaction ²⁴²Pu(⁴⁸Ca,3n) [4].

Table 1

Thermodynamic data for elements Hg, Rn, and element 112: Sublimation enthalpy ΔH_{subl} and adsorption enthalpy ΔH_{ads} on gold.

Element	Reference	$-\Delta H_{ads}(\mathrm{Au}),$ kJ/mol	$\Delta H_{subl},$ kJ/mol	Method
112	[22]	22		Empirical
112	[19]	84		Semi-empirical
112	[20]		39	Empirical
112	[29]	24		Empirical
112	[16]	~ 80		Calculation
112	[17]	~ 65		Calculation
112	[24]	< 60		Experiment
Rn	[29]	$29{\pm}3$	22	Experiment
Hg	[25]	$98{\pm}3$	64 [32]	Experiment
Zn	[32]		130	Experiment
Cd	[32]		111	Experiment

2. Experimental

2.1. Experiment with the ²³⁸U targets

A grid supported stationary 1.4 mg/cm² ²³⁸U target was irradiated for about 4 weeks with a total beam dose of $4.5*10^{18}$ particles ⁴⁸Ca at a center of target (COT) energy of 237 MeV. ^{nat}Nd (15 µg/cm²) was added to the target in order to produce α -decaying ¹⁸⁵Hg, which has a half-life of 49 s. The collimator grid supporting the 4µm Ti vacuum window had a beam transmission of 55%. The uranium target was mounted on a copper cooling grid facing the incident beam. The recoiling products had to pass the 1.5 µm Ti target backing and subsequently this grid. An average loss of 20% due to the target grid was determined. The volatile products were transported by a 900 ml/min carrier gas mixture of He/Ar 70%/30% through an tubular oven with a quartz tube filled with a quartz wool plug and with Ta metal held at 850 °C. This arrangement ensured the removal of the aerosol particles produced by beam induced sputtering on the beam dump and the removal of traces of oxygen and water from the carrier gas. The volatile atomic and molecular

species were transported through an 8 m long PFA capillary to the thermochromatography detector COLD. Several α -decaying Rn isotopes (^{219–221}Rn) are produced in the ⁴⁸Ca induced nuclear fusion reaction with ²³⁸U at high cross sections. Thus, Rn and Hg have been studied simultaneously with element 112 throughout the entire experiment. The COLD detector provided an on-line thermochromatogram of the adsorption of mercury (^{185}Hg) and radon (^{219}Rn) on a gold surface, covering a temperature gradient of -5°C/cm from -24 °C down to -184 °C (see Figure 1A). The transport time was measured for 185 Hg as 3.6 s. The decay losses during the transport account for a transport efficiency of about 54% for a volatile species having a half-life of 4 s. The deposition efficiency was 100% and 88% for ¹⁸⁵Hg and ²¹⁹Rn, respectively. The detection efficiency for the $^{283}112(\alpha)$ - 279 Ds(SF) correlation was 75%. The effective target thickness was assumed to be about 1.0 mg/cm^2 with respect to the shape of the excitation function of the reaction 238 U(48 Ca,3n) 283 112 as reported in [4]. However, the target material losses due to beam sputtering were considerable. These losses could be estimated using the absolute yield drop of ¹⁸⁵Hg during the irradiation. This drop was accounted for additionally as a virtual effective target thickness loss of 44% (see table 2). The target was changed once in a week. Together with the losses in the target cooling grid the overall efficiencies of the experiment of about 10% and about 9% were estimated for a Hg-like and for a Rn-like ²⁸³112, respectively.

2.2. Experiments with the ²⁴²Pu targets

A ²⁴²Pu target (1.4 mg/cm²) without grid support was irradiated with 3*10¹⁸ ⁴⁸Ca particles at a centre of target energy of 237 MeV using an otherwise same target assembly as in the experiments with the 238 U target. *nat*Nd (15 μ g/cm²) was added to the target material. Due to beam sputtering the target material losses were about 51% per week. Therefore, the target was changed about once in a week. In the reaction ${}^{242}Pu({}^{48}Ca,3n){}^{287}114$ the isotope $^{283}112$ is only indirectly formed via the α -decay of $^{287}114(T_{1/2}=0.5 \text{ s}, E_{\alpha}=10.08 \text{ s})$ MeV). ²⁸⁷114 is too short-lived to be transported to the COLD detector in this experiment. Therefore, it decays either in the recoil chamber or in the transport line. Perhaps, element 114 is adsorbed to a surface. Therefore, a recoil implantation of its alpha decay product $^{283}112$ has to be assumed, lowering the transport yield for this isotope additionally by up to 50%. The experimental setup was kept the same as in the experiment with the 238 U target. The overall efficiency of the experiment was about 12% and 8% for a Hg-like and for a Rn-like ²⁸³112, respectively. The experiment was started (Part A) establishing a temperature gradient of -5 ° C/cm between -24 ° C down to -184 ° C (see Figure 1A) in the COLD. Later on (Part B) a temperature gradient of about -6.5 ° C/cm between +35 ° C and -180 °C (see Figure 1B) was installed.

3. Results and Discussion

3.1. Experiments with the ²³⁸U targets

A typically measured distribution of ¹⁸⁵Hg and ²¹⁹Rn along the detector at these conditions is shown in the thermochromatogram (see e.g. Figure 1A, grey and white bars, respectively). From the distribution of atoms on a chromatographic surface along a temperature gradient it is possible to quantify the enthalpy of the adsorption interaction $(-\Delta H_{ads})$ of the elements on the surface using the microscopic Monte-Carlo based model

377c

of gas adsorption chromatography [30]. The Hg-isotopes were completely deposited on the gold-surface in the first 8 detectors down to -60 °C. This spontaneous, diffusion controlled deposition pattern of Hg on Au allows the determination of a lower limit of $\Delta H_{ads}^{Hg}(Au) > 47$ kJ/mol. This value agrees well with previous observations [25] (see table 1). ²¹⁹Rn was deposited on the last 5 detectors peaking on detector 28 at a temperature of -170 °C. For radon the deposition distribution is reproduced by the Monte-Carlo model with an adsorption enthalpy of $-\Delta H_{ads}^{Rn}(Au) = 20\pm 1$ kJ/mol, which is lower than data given in literature [29] (see table 1). The dew point of water in the carrier gas was measured as about -100 °C. This corresponds to water content of less than 0.1 ppm. We can therefore assume that the Au surface is covered by a thin ice layer at the very low temperatures (see Figure 1A). The determined adsorption enthalpy of radon on ice is therefore in good agreement with literature data [31]. During four weeks of irradiation no decays related to ²⁸³112 were detected and no SF decays at all.

Table 2

Cross sections (σ) reported so far for ²⁸³112 investigated in chemistry experiments directly produced in the reaction of ⁴⁸Ca with ²³⁸U and from this work.

Ref.	Beam	Target	Chemistry	Energy	Decay properties		\mathbf{N}^{a}
	dose	thickness	efficiency	(COT)	of $^{238}112 (T_{1/2})$		
		(effective)			$\alpha\text{-}\mathrm{SF}$	\mathbf{SF}	
	$x10^{18}$	$x10^{18}$	%	MeV	$(4 \ s)$	(5 min)	
					σ , pb		
[24]	2.8	2.5	50	231	$> 7^b$	$2^{+2}_{-1.2}{}^c$	8
[26]	2.8	2.0	61.6	238	$< 2.3^{c}$	$< 0.8^{c}$	0
	1.4	2.0	44.4	241		$< 1.7^{c}$	
[this	4.3	1.4 d	17.6	237	$< 2.5^{c}$	$< 1.3^{c}$	0
work]							

 a Number of observed events attributed to the decay of $^{283}112$

^b Some of the observed SF-decays in [24] were hypothetically attributed to the less efficient transport of the α -decaying ²⁸³112(4 s) followed by SF of ²⁷⁹Ds(0.2 s) [4];

 c Upper limit sensitivities at 95.45% c.i.;

 d accounting for a target material loss during the irradiation, which was quantified using 185 Hg yield, an effective target thickness of $1.4^{*}10^{18}$ was calculated from the initially assumed effective target thickness of $2.5^{*}10^{18}$ atoms.

In Table 2 the production cross sections were evaluated in dependence on the expected decay properties for ²⁸³112 for all chemistry experiments. Summarizing the results from the two gas phase chemical experiments, which were sensitive to detect a 4 s α -decay of ²⁸³112 followed by 0.2 s SF-decay of ²⁷⁹Ds from [26] and this work it is possible to give an upper limit cross section of about 1.3 pb (95 c.i.) for the nuclear reaction ²³⁸U(⁴⁸Ca,3n)²⁸³112.

Figure 1. Thermochromatograms of ¹⁸⁵Hg (grey bars), ²¹⁹Rn (white bars) and ²⁸³112 (black arrows) on gold and ice surfaces of the COLD detector. Each bar for ¹⁸⁵Hg and ²¹⁹Rn represents the yield measured in one detector sandwich of COLD. The border between gold and ice is indicated (dashed-dotted line). The stepped lines represent the Monte Carlo analysis of the chromatographic behaviour using the microscopic model of adsorption chromatography [30].

3.2. Experiments with the²⁴²Pu targets

The temperature gradient in Part A of the experiment was established from -24 to - 184 ° C aiming at an almost quantitative deposition as well as for a Hg-like as for a Rn-like species. Indeed, the entire ¹⁸⁵Hg and 88% of ²¹⁹Rn which reached the COLD detector were deposited (see Figure 1A). The ¹⁸⁵Hg and ²¹⁹Rn showed the same deposition pattern as measured in the experiment with the ²³⁸U target yielding the same thermochemical data for the adsorption of both species on gold (Hg) and ice (Rn). In this part of the experiment the first decay chain unambiguously attributed to the decay of ²⁸³112 was detected. It was a 9.37 MeV alpha particle followed after 0.592 s by a high energy spontaneous fission. Both fragments having energies of 108 MeV and 123 MeV were detected in the same detector sandwich as the preceding alpha. This was the first SF decay detected after overall 5 weeks of beam time. In the first 15 detectors there were only five alpha particles measured between 9.15 and 10.5 MeV during the 4 h run. Therefore, we conclude that the measured decay chain has a very low random probability of (j4x10⁻⁴). Its deposition temperature of -28 °C directly in the deposition region of Hg (detector 2) (see Figure

1A) allows to clearly distinguish it from the radon deposition. Only a 0.5%/detector in flight decay of 219 Rn(T_{1/2}=3.96 s) is expected, which makes the observation of an in flight decay of ²⁸³112 followed by deposition and decay of ²⁷⁹110 very improbable. To possibly distinguish the element 112 adsorption behavior on gold also from the mercury adsorption properties, a new temperature gradient starting from +35 °C down to -180 °C (see Figure 1B) was established in Part B of the Experiment. The deposition behavior of 185 Hg and ²¹⁹Rn at these conditions is shown in Figure 1B. From the spontaneous diffusion controlled deposition pattern of ¹⁸⁵Hg a lower limit adsorption enthalpy of $-\Delta H_{ads}^{Hg}(Au) > 67 \text{ kJ/mol}$ was deduced, which is consistent with the experimental value determined for ΔH_{ads} on gold [25] (see table 1). As expected, the ²¹⁹Rn deposition maximum moved towards the end of the detector. Hence, a substantial fraction of about 35% ²¹⁹Rn did not deposit in the COLD. The corresponding adsorption enthalpy of Rn on ice $(-\Delta H_{ads}^{Rn}(ice) = 20 \pm 1 \text{ kJ/mol})$ is in excellent agreement with the previous observations. At these experimental conditions we observed a second correlated decay chain with the clear signature of the $^{283}112$. A 9.47 MeV alpha decay was followed within 0.536 s by a high energy spontaneous fission decay in the same detector sandwich. The fission fragments had energies of 127 MeV and 105 MeV. This decay chain was measured in detector 7 at a temperature of -5 °C. Detector 7 was reached by only 5% of the 185 Hg i.e. 2% of the Hg was deposited on the detector and 3 % reached the detectors 8-14 (see Figure 1B). A statistical analysis of the observation of both atoms of ⁽²⁸³⁾112 using the Monte-Carlo technique [30] allowed for a direct quantification of the adsorption interaction of element 112 with a gold surface. An adsorption enthalpy of $-\Delta H_{ads}^{112}(Au) = 52^{+46}_{-7} kJ/mol$ (68% c.i.) was deduced, which represents the first ever thermochemical value determined for element 112 [28]. This value is indicative for a metallic interaction of element 112 with gold surfaces.

4. Conclusion

The upper production cross section limit of $^{283}112$ in the reaction $^{238}U(^{48}Ca,3n)$ from all IVO chemistry experiments sensitive to the 4s α -SF decay scheme is 1.2 pb (95% c.i.), which lower than the cross section of $2.5^{+1.8}_{-1.1}$ pb reported in [4]. On the same statistical confidence level there is no evidence for a 5-min SF decaying ²⁸³112 as it was reported in [3,2,24] to a cross section limit of 0.39 pb. The observation of the isotopes ²⁸³112 and ²⁷⁹Ds in this gas phase chemistry experiment confirm the reports on their production in the nuclear fusion reaction of 48 Ca and 242 Pu and the reported decay properties [4]. The results of this experiment confirm also the discovery of ²⁸⁷114 and ²⁹¹116 reported in [4], since the chemical identification of $^{283}112$ and the confirmation of its decay properties are determining the atomic numbers attributed to the members of the observed alpha decay chains passing ²⁸³112 and ²⁷⁹Ds. The significantly higher interaction of element 112 with a gold surface compared to radon, observed from the thermochromatographic deposition of ²⁸³112 in the COLD detector, reveals a clear indication for a metallic bond formation of element 112 with the gold surface, suggesting it to be a typical group 12 element [28]. The observed transport of atomic element 112 through the chemical setup is indicative for its high volatility. Further, more sensitive experiments are envisaged with ²⁸⁵112 produced in the 48 Ca on 244 Pu reaction [4].

5. Acknowledgements

We thank the staff of the U-400 cyclotron and the ECR group at FLNR for providing intense beams of 48 Ca. This work was supported in part by the Russian Foundation for Basic Research (grant no. 04-03-32047) and by the Swiss National Science Foundation.

REFERENCES

- 1. Yu. Ts. Oganessian et al., Nature 400 (1999) 242.
- 2. Yu. Ts. Oganessian et al., Eur. Phys. J. A5 (1999) 63.
- 3. Yu. Ts. Oganessian et al., Eur. Phys. J. A19 (2004) 3.
- 4. Yu. Ts. Oganessian et al., Phys. Rev. C70 (2004) 064609.
- 5. Yu. Ts. Oganessian et.al., Phys. Rev. C69 (2004) 021601.
- 6. W.D. Myers, W.J. Swiatecki, Nucl. Phys. 81 (1966) 1.
- 7. H. Meldner, Ark. Fys. 36 (1967) 593.
- 8. Ch.E. Düllmann et al., Nature 418 (2002) 859.
- 9. D. Schumann et al., Radiochim. Acta 93 (2005) 727.
- 10. Yu. Ts. Oganessian et al., Phys. Rev. C72 (2005) 034611.
- A. Türler, K.E. Gregorich, Chemistry of Superheavy Elements, ed. M. Schädel, Ch. 4, pp.117, (Kluwer Academic Publishers, 2003).
- 12. P. Pyykkö, J. Desclaux, Acc. Chem. Res. 12 (1979) 276.
- P. Schwerdtfeger, M. Seth, Enyclopedia of Computational Chemistry, Vol. 4, pp.2480 (Wiley, New York, 1998).
- 14. K.S. Pitzer, J. Chem. Phys. 63(2) (1975) 1032.
- V. Pershina, T. Bastug, T. Jacob, B. Fricke, S. Varga, J. Chem. Phys. Lett. 365 (2002) 176.
- 16. V. Pershina, T. Bastug, Chem. Phys. 311 (2005) 139.
- 17. C. Sarpe-Tudoran et al., Eur. Phys. J. D24 (2003) 65.
- 18. M. Seth, P. Schwerdtfeger, M. Dolg, J.Chem. Phys. 106 (1997) 3623.
- 19. B. Eichler, H. Rossbach, Radiochim. Acta 33 (1983) 121.
- 20. B. Eichler, PSI Report 00-09; Villigen (2000), 03-01 Villigen (2002) ISSN 1019-0643.
- 21. E. Eliav, U. Kaldor, Y. Ishikawa, Phys. Rev. A52 (1995) 2765.
- 22. B. Eichler, Kernenergie 19 (1976) 307.
- 23. A.B. Yakushev et al., Radiochim. Acta 89 (2001) 743.
- 24. A.B. Yakushev et al., Radiochim. Acta 91 (2003) 433.
- 25. S. Soverna et al. Radiochim. Acta 93 (2005) 1.
- 26. R. Eichler et al. Radiochim. Acta 94 (2006) 181.
- H.W. Gäggeler, Proc. of 8th Int. Conf. on Nucleus-Nucleus Collisions 2003, Moscow, Russia, Nucl. Phys. A 734 (2004) 208.
- 28. R. Eichler et al. Nature (2006) submitted.
- 29. R. Eichler, M. Schädel, J. Phys.Chem. B 106 (2002) 5413.
- 30. I. Zvara, Radiochim. Acta 38 (1985) 95.
- 31. B. Eichler, P. Zimmermann, H.W. Gäggeler, J. Phys. Chem. A104 (2000) 3126.
- Lide, D. R. (ed.) Handbook of Chemistry and Physics, 79-th edition, Sect. 5, 4-60, Standard thermodynamic properties of chemical substances. (CRC Press, Boca Raton, 1999).